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ABSTRACT

B e T

In this paper, the feasibility of transferring control engineering fault detection ideas to the problem of
cause identification of arterial hypertension in humans,is investigated Specifically,two methods are considered:
a model-based parameter estimation technique and an artificial neural network approach (ANN).

The mathematical model used for the simulation of the human arterial pressure control system,the
proposed malfunction detection and identification methods,together with their merits and shortcomings,
are described in details.
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1. Introduction |

The fields of engineering and medicine have been traditionally invqlved in
exchanging ideas and knowledge information aiming at improving the
effectiveness of methods in both areas. Some late results from the field of
artificial neural networks in control engineering are based on findings from the
molecular workings of human neurons while progress in microelectronics and
computing science have greatly enhance the diagnostic power of contemporary
medicine. These are only two of the many examples that can be cited in order to
substantiate our opening statement.

In this work we are investigating the feasibility of transferring control
engineering fault detection ideas to the problem of cause identification of arterial
hypertension in humans. Specifcally, we are considering two such methods: a
model-based parameter estimauon technique and an artificial neural network
approach (ANN).

The idea of applying control fault detection ideas to the identification of
malfunctions of the human system is not new. Gustafson and his research team
(1978a, b) have investigated the detection and classification of cardiac arrythmias
using generalised likelihood ratio (GLR) techniques. In this approach a set of
phenomenological models for both persistent and transient rhythms was
developed, in order to match observed statistical variations. Arrythmias were
identified by calculating statistical probabilities and likelihoods associated with
these models, based on R-R interval data. Doerschuk and co-workers (1986) have
extended this approach by implementing a distributed, hybrid model, i.e. one
involving both continuous and discrete phenomena. In this framework,
formulation of models and estimation problems that capture all aspects of rhythm
analysis was possible.

More recently Frangakis et. al (1990) have applied an expert system approach to
the problem of blood pressure (BP) signal diagnosis. In this method, rules that
correlate the BP pattern shape with diseases in the circulatiqn system were
formulated in terms of a set of primitive patterns which constituted the expert
system knowledge base. The expert system module was interfaced with a signal
analysis module, responsible for BP signal acquisition and pattern recognition.
Apart from the "normal" state, three abnormal conditions were detected in this
manner: aortic stenosis, arteriosclerosis and aortic insufficiency.

The desire to understand more fully the mechanisms of human arterial pressure
regulation so as to aid the diagnosis of its malfunctions, mainly chronic
hypertension, has stimulated this work. In the next sections we describe the
mathematical model used for the simulation of the human arterial pressure control
system, the proposed malfunction detection and identification methods, together
with their merits and shortcomings.

2. Mathematical model of arterial pressure regulation.

The development of a precise mathematical model of the monitored process, is
more or less required for either of the proposed fault detection and identification
(FDI) methods described later.
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The systems analysis of circulatory regulation adopted in this work is based on the
_ research of the team around Guyton (1980) and later Coleman (1985). Thls work
has led to the development by Montani et al. (1989) of MODSIM, a simulation
_ tool for studying very large dynamic models of the human system. Version 1.0 of
this system, written in C, is currently under evaluation for the needs of present
research.

To effectively model the human circulatory system, one must know the various
parts of the body that affect arterial pressure and their interrelations. This would
in fact lead to a model of the whole human organism. Therefore different levels
of complexity must be examined, starting from the very simple and going to the
more difficult. Figure 1 shows such a simple hemodynamic model while Figure 2
is its block diagram equivalent. All the pressures are represented by the letter P,
the capacitances, C, volumes, V: resistances, R; flows, F and heart strength, Hs.
Subscripts denote arteries, a; capillaries, ¢, veins, v and right atrium ra.

Fa=51/min
Pra=0mmHg
Cra=.005L/mmHg :
Yra=.iL PI"OUMN‘IH(
Yrao=.1L % sernidl Cq=.00355[/mmﬂ1
: Ya=.85L
fres e Yao=.495L

Rv=.74 mmHg/L/min

Pv=3.fmmHg 1

Cv=.0825

L/mmHg }
¥v=3.25L
Yv0=2.951

Ra=19.34
mmHg/L/min

Vb=5L Fe=5L/min
Figure 1. A simple hemodynamic model of the circulation

In this model, heart pumping effectiveness is measured by the cardiac output
curve as illustrated in Figure 3 for normal heart strength (Hs=1). The basic
physical equations used to build this model are the following:

flay = Pressuts difference

resistance
rate of change of blood volume = flow difference

excess blood volume

pressure = -
capacitance
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Figure 3. The normal cardiac output curve (Hs=1)

This simple model is in fact a closed hydrodynamic system that has no means for
regulating the blood volume, which remains constant. Therefore, regulation of
arterial pressure is limited. However, it can be used to test the applicability of the
proposed FDI methods.

In a second level of difficulty, the model of Figure 4 is used (Figure S is its block
diagram equivalent, only relevant blocks used). In this model, two essentials for
blood volume control have been added: (1) the fluid intake-renal output system,
and (2) the tissue space fluid reservoir system, which can interchange interstitial
fluid with the circulating blood.




Application of control fault detection ideas to arterial hypertension diagnosis -

The Intake-Output system: This is composed of the daily intake of water and
electrolytes on one hand, and the daily output of water and electrolytes on the
other. Only losses through the kidneys are considered, since the rest do not vary
with arterial pressure changes. The kidney portion of the intake-output system
however, is highly responsive to the arterial pressure as illustrated in Figure 6.

INTAKE

TISSUE SPACE
RESERVOIR

Yife
Cts
ptf

RAP: renal arterial pressure, UO: vurimxy output, Pc: capillary pressure, Vtfe: excess fluid
in interstitial space, Cts: capacitance of tissue space, Ptfitissue and colloid osmotic
pressures of capillary blood and tissue fluids
Figure 4. The basic circulation with intake-output and tissue space reservoir
systems.

The marked increase in urinary output as the arterial pressure rises is the basis of a
negative feedback mechanism for control of arterial pressure. This mechanism is
extremely powerful for long-term control of arterial pressure. Another important
characteristic of the renal function curve is the way by which its characteristics
change. This can be done in either of two ways:

1. If the intake level is changed, thus changing the set-point of the feedback
control system to a new point defined by the intersection of the renal function
curve and the intake level line.

2. If the chronic renal function curve itself is changed, which can be the result of
many different mechanisms. The curve may be shifted to the left or right of
the normal position or can change its slope or shape.
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The tissue space fluid reservoir system: The filling of this reservoir is in
balance with the filling of the circulatory system. When the capillary pressure
becomes too high, flurd transudes into the tissue space and vice versa. However,
the tissue space reservoir does not have infinite capacity: is capable of "buffering"
the blood volume by a factor of 5 to 10. That is, if blood is lost from the system,
the tissue space reservoir will, within a few miniutes to few hours, automatically
replenish between 5/6 and 10/11 of the lost blood volume.

Analysis of this system shows that changes in the total peripheral resistance, the
circulatory capacitance or the heart strength are all unable to change the long-term
level of arterial pressure. This is only possible if either the intake or the
quantitative characteristics of the renal function curve are changed.

If further complexity is required, the following blocks can be added to the basic
system:

Autoregulation: Autoregulation is the process whereby each local tissue of the
body controls its own blood flow according to the needs of that tissue. The
simulated mechanism of the autoregulation process is roughly the following:
whenever the cardiac output becomes different from the normal level, it sets into
motion a progreesive change in total peripheral resistance, until cardiac output
reapproaches normal level. The degree to which it reapproaches the normal level
is expressed by the gain of the autoregulatory feedback mechanism, and the time
required for it to approach the new steady-state level is expressed by its time
constant. One of the very important factors of the autoregulatory mehanism is to
compensate for the arterial pressure-dilatation phenomenon.

The renin-angiotensin system: The basic actions of angiotensin that are known
to be important in blood pressure control are the following:
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I. Angiotensin has a potent direct effect to increase arteriolar resistance in all or
almost all areas of the body, thus increasing total peripheral resistance.

2. Angiotensin has a moderate effect to decrease the overall vascular capacitance.
Though angiotensin mainly causes arteriolar constriction, it does cause a mild
to moderate degree of constriction of the veins as well.

3. Angiotensin causes the kidneys to retain both salt and water.
Studies have shown that only the third type of effect causes chronic hypertension.

Nervous mechanisms: The nervous mechanisms of pressure control fall into
two separate categories:

1. Pressure controlling reflexes, and

2. Won-reflex signals that are transmitted from the central nervous system to the
vasculature and other organs and that eventually affect blood pressure
regulation.

The most important pressure controlling reflex is the baroreceptor reflex. The
baroreceptor reflex damps acute changes in arterial pressure. However it does
not affect the long-term level to which the arterial pressure is controlled because
the baroreceptors adapt after several days to the new pressure level. There are
reasons to believe that all or most of the other blood pressure controlling reflexes
(peripheral chemoreceptors, receptors of the vasomotor center, abdominal
compression reflex, volume reflex, cardiopulmonary pressure reflex) also adapt
and therefore do not affect the long-term arterial pressure level.

The previous paragraphs outline the basic factors the affect arterial pressure
control. Yet many other factors also have various degrees of effects on arterial
pressure control. These include the aldosterone system, the ADH system, the
thirst mechanism, the salt appetite mechanism, the concentrations of sodium and
potassium in the circulating blood, the vascular stress-relaxation system, the red
blood cell production system, capillary membraré dynamics, the compliance of
the interstitial space, the composition of the interstitial fluid, the long-term control
of heart muscle mass and other factors. A block diagram incorporating all those
factors is depicted in Figure 7.

3. Fault detection via parameter estimation

Fault detection via parameter estimation relies on the principle that possible faults
in the monitored process can be associated with specific parameters and states of a
mathematical model of a process given in general by an input-output relation,

y(t)= fu, e, 6, x) (H

where y(f) represents the vector output of the process, u(f) the vector input, x(?)
the partially measurable state variables, 8 the nonmeasurable process parameters
likely to change and &(?) unmodeled or noise terms affecting the process. It is
obvious therefore, that it is necessary to have a good theoretical dynamic model of
the process in order to apply parameter estimation methods. This is usually
derived from the basic balance equations for mass, energy, and momentum, the
physico-chemical state equations and the phenomenological laws for any
irreversible phenomena. :
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Figure 7. A complex, integrated system for arterial pressure control.
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The models will then appear in the continuous or discrete time domam, in the
form of ordinary or partial differential or difference equations. Their parameters
8 are expressed in dependence on process coefficients p, like storage or resistance
quantmes whose changes indicate a process fauit. Hence the parameters & of
continuous time models have to be estimated. As an example consider a sxmple
dynamic process model with lumped parameters, linearized about an operating
point, which may be described by the differential equation,

A + ... + 3 y0(d) = byu(H + byu(f) + ... + b ul™)(d) (2)
The process model parameters,
&= a, .., a| by ... b, ] 3)

are defined as relationships of several physical process coefficients, e.g. length,
mass, speed, drag coefficient, viscosity, resistances, capacities. Faults which
become noticeable in hese physical process constants are therefore also expressed
in the process model parameters. If the physical process coefficients, indicative of
process faults, are not directly measurable, an attempt can be made to detect their
changes via the changes in the process model parameters 6. The following
procedure is therefore applicable in general:

(1)  Establishment of the mathematical model of the normal process,

¥ = fu(d, 6) @)
mainly from theoretical considerations. At this stage allowable tolerances
for process coefficient values are also defined.

(2)  Determination of the relationship between the model parameters & and the
physical process coefficients p;,

6= fp) &)

(3)  Estimation of the model parameters & from measurements of y(f), u(f), by
a suitable estimation procedure, -

6(t) = gy (), ¥ (©)u(l),..,u(t)) (6)
(4) Calculation of process coefficients, via the inverse relationship,
p&)=£"(6(t)) (7)

(5) Decision on whether a fault has occurred, based either on the changes Ap
calculated in step 4 or on the changes A8 and tolerance limits from step 5
If decisions are made based on the A@ the affected p's can be easily
determined from (5). This may be achieved with the aid of a fault
catalogue in which the relationship between process faults and changes in
the coefficients Ap; has been established. Decisions can be made either by
simply checking against the predetermined threshold levels, or by using
more sophisticated methods from the fields of statistical decision theory. A
fault decision should include the fault location, fault size and time of
occurrence.

The basis of this class of methods is the combination of theoretical modeling and
parameter estimation of continuous time models. Since, however a requirement of

10
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this procedure is the existence of the inverse relationship (7) it may be restricted
to well-defined process.

The implementation of the full procedure requires considerable effort in modeling
the process, more sophisticated and fault-sensitive identification methods and fast
processing hardware suitable for on-line operation.

In order to apply the aforementioned ideas to the problem of malfunction
detection and diagnosis of arterial hypertension, a mathematical model of the
arterial control system in the form of equation (2) must be built. Considering the
analysis of the previous section, this should not prove to be a difficult task. For
example, the system of figure 2 is described by the following system of first order
non-homogeneous differential equations,

: e 1 1 . Vo e Vi +£,(t)

L C.R, C.R, A CvR, C.R,

SECENRE . o D S
CR: CoR CRy T CoR CLR, RGC, TG ReuC e 20 C..

where £, is the cardiac output function of figure 3. Zero subscripts denote
unstressed volumes, while V is the total instantaneous volume of the circulatory
system. This system can be put in the form of equation (2), if it is rewritten as,

: = :
CARA
: ]
v.=[v. v, 1
A [A v ] CVRA
_i.’._ﬁ_.*.f“(t)
L CVRA CARA ]
= - .
£
CARA CRARV
v, =¥, % 1 i : l
= 5 =
# oS ol Ber o 'S
Sy Vel e Fews  V
[ B0 € Rt O, Tu)

Hence, the following parameters can be estimated by observing V,, Vy:

11
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[ 1 ]
6, CrRA
wle C.R
P v,
3
-&l..*._KL.i.fA(t)
5 CvR, C,R, J
: =
. 1 & 1
6‘ CARA CRARV
8l 1 2 1 5! 1
. C/Ry CuR, CuR,
Tl ii, Bl Yer Vi ¥
_RA S B\ Gy Gy Ci :

Note, that even though volumes are used in the above equations, they can be
easily calculated from measured pressures.

The equations for the more complicated versions can be obtained in a similar
manner, if one works with the block diagram of figure 4.

It can be seen therefore, that, at least in theory, faults in the circulatory system can
be detected if an adequate history of pressures is available. A difficulty that may
arise is the requirement of many identification methods, ie. that the system be
persistently excited.

4. Neural network approach to hypertension diagnosis

Artificial Neural Networks (ANN) are a kind of nonlinear net systems composed
of a large number of interconnected simple computing elements. Neural networks
can autonomously store knowledge by learning from historical information and
have the associative memory ability. Various researchers have demonstrated the
ability of neural networks to diagnose faults in dynamical processes. Hoskins et
al. (1988) applied ANN's to the diagnosis of a simple chemical processes
composed of three continuous stirred tank reactors in series. Watanabe et al.
(1989) presented a two-stage multilayer neural network to diagnose faults in a PI-
controlled process. Venkatasubramanian and Chan (1989) developed an ANN to
diagnose the faults of a fluidised catalytic cracking process.

In this section we propose the use of the perceptron netvork and the back-
propagation algorithm for the diagnosis of hypertension conditions. The proposed
methodology treats fault diagnosis as a classification problem. Similar to
classification theory, neural networks perform the classification by creating
decision boundaries to separate the different pattern classes. However, unlike
traditional classifiers, when a classification is realised with neural networks, the
whole mapping from sample space into decision space is done at the same time.
The knowledge of the fault diagnosis is stored distributely in the highly
interconnected neuron-like elements. Morover, it is these internal representations

12
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which lead to the associative memory and generalisation abilities exhibited by
these structures.

The single-layer perceptron network: The perceptron was first presented by F.
Rosenblatt in 1957. Itis a simple single computation layer neural network with an
input and output layer, as shown in figure 8.

Figure 8. Single-layer perceptron network

The outputs of the network are calculated from the formula:

» :
Y, =fQ WX, -6,)j=12 ..,1
i=l
where X; is the input to the input layer node i, Y; the output of the output layer
node 5 W the weight of the connection from the output node J to the input node
8. the bias of the output node j and f is a nonlinear function, usually a hard limiter,
tﬂreshold logic or sigmoid function.

For a group of M training input-output pattern samples X ol Xp2s oo s 4 ps Loy
=1, ..,, M, the mean square error over all traxmng pattems tween e
actua‘l)l outputs Yy and the desired ones is,

E= 35, v,

p—lJI

The process of network training or learning is nothing more than a process of
minimising the error E by adjusting the weights by a suitable algorithm such as
the delta rule [Pao, 1989]. This rule adjusts the weights according to,

W,k +1) = W, (k) +n8,X, +a[W, (k)= W, (k - 1)]

N
8, =(T, =Y )" (W, X, +6))
i=l
where k denotes the iteration step during training, 77 (0<7<lI) is the learning rate or
the gain coefficient which provides the step size during weight adjustment and a
(0<a<l) is the coefficient of the momentum term, which assures rapid
convergence with large step sizes without oscillations.

13
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In a similar way multilayer perceptrons are trained using the generalised deita rule
of Rumelhart et al. (1986).

The process of fault diagnosis is also a process of pattern recognition. In the
traditional pattern recognition technique, the pattern classification is carried out
through a series of decision functions. For a classification of N-dimension pattern
space with M clusters, it may be posed as a problem of how to define hyperplanes
to divide the N-dimension Euclidean space into M decision regions. In a similar
fashion, neural networks can perform the classification by creating decision
boundaries to separate the different pattern classes. In this way, the neural
network performs fault detection and isolation in a transparent way. In a highly
nonlinear system, such as the human circulation, analytic development of relevant
algorithms is almost impossible. Neural networks however are capable of
performing these functions. The whole procedure is as follows:

1. Development of cir:ulation system simulator. This is essential, since it is not
possible or someumes ethical, to simulate faults on a living organism.
Results of the previous section can be used here.

2. Selection of representative fault situations for study. These may be increased
arterial resistance, renal function abnormalities, angiotensin secretion
irregularities etc. Let these faults denoted by f; For each of these faults an

output pattern vector is selected usually an ith unit vector as shown in Table

1.
FAULTS OUTPUT VECTORS

L 1000..0

H | 01060

v G000 1

Table 1. Output training vectors

3. Specification of training parameters, 7, a, Epjp and structure of network
(number of layers, number of nodes per layer). Usually a single-layer
perceptron is used for a start.

4. Training of the network using input test patterns and output test patterns until
E<Emin

5. Following the training, verification of the proposed structure is carried out by
presenting the network with samples not contained in the training. Results
are used to decide whether fault classisification is correct in all cases.

6. Conclusions

We have presented two methodologies for malfunction diagnosis in human arterial
pressure regulation. This is a very difficult problem since on one hand this a very
complicated non-linear dynamical system and on the other the causes of chronic
hyperension are not agreed upon by all researchers in the field. We believe that
the merging of well established control fault detection ideas in this field, will

14
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produce good results and will help in the understanding of hypertension
development.
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